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3.5 Linear Microwave Sources

3.51 Linear 1-Port Sources

Generators used in microwave engineering often deliver their energy via
dominant-mode waveguides. If the single-frequency, or at least Spectrally
limited, signal generated here lies within the single-wave region of the dominant-
mode line, a one-port source can be associated with the generator junction
(cf. Section 3.3). In many cases, such a l-port source can be approximated
with the model of a linear l-port source. By this we mean a l-port network
which is adequately described by one time-independent (sourceless) parameter
and one source variable which is independent of it; the sourceless parameter
and the source variable are themselves independent of the external circuitry,
i.e., independent of the variables of state in the reference plane defining
the l-port network on the dominant-mode line.

In the following, we will limit our discussion to linear l-port sources
with sinusoidal (time-wise)} source variables, i.e., single-frequency
source variables whose frequencies lie within the domain of definition
of the l-port network. If this source is now connected with a linear,
time-independent and sourceless l-port network or an equivalent network, all
variables of state for the entire system are sinusoidal and of the same fre-
quency as the source variable, and can thus be represented by vectorial or
‘scalar components. The operating state of the source is now described by a
suitable pair of state variables in the reference plane, in the same manner
as for the sourceless l-port network., The same conventions are assumed to
apply to the coordinate system and the reference structure as for the corres-
ponding l-port network; in particular, the z-directioﬁ is taken to be positive

_ going into the junction in both cases. A suitable pair of variables of
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state for describing the operating state of the lincar l-port source, for

E in the reference plane 2z = 0. In

example, are the vectors E;l s E oy

contrast to the linear time-independent and sourceless l-port network, however,

the departing wave is now no longer proportional to the arriving wave

Eer
5;1 {cf. Eq. (3.4/1a)), but is a general linear function of two variables:

- + -
the arriving wave Etl and a source wave g_th, independent of it, with the same
structure as E;I and §;1. We can then describe the operating state, for

example, with the equation of state

Eﬁ == r1 E‘i + th'i ) ’ (3.5!1)

We break down the departing source wave E;Ql at point z = 0, corresponding
to the vector quantities Ef =t /20 0, and
B =tV Z5 b, , into its vectorial and scalar components
Egi = 4 +VZp bg (3.5/2)

and thus obtain the scalar equation of state from Eq. (3.5/1):

by =ria1 + f{g_l- (3-5@) ,

i

We call the quantity r. the internal reflection factor, or reflection factor

1

for short, and le the departing source wave variable, or source wave or
original wave for short, of the linear l-port source.

If the source is closed off with a suitable ideal absorber, then, in

-+
accordance with Definition 11, departing wave Etl or a, is zero, and the

1= Bequr P17 Pqu

Thus at the same time, we have a measurement rule for determining the

departing wave is thus equivalent to the source wave E;

departing source wave. In this configuration, the effective power delivered

to the absorber by the source is

Pjiw= } 15, = § [boyP. (3.5/4)



This is also the maximum deliverable or available effective power from a l-port

source with r. = 0 (see also Section 4.25}.

1
Like sourceless l-port networks, l-port sources can also be represented
in a different manner (cf. Fig.3/11). We obtain the voltage/current representation

from the special wave representation (Eq. (3.5/3)) if we express the port wave

variables a5, b1 with port voltage u, and port current il’ using Eq. (2.5/13}:

-& {1 —#1) =n % {11 + 1) + bq.

By solving for ul(il) and il(ul) respectively, we then obtain

uy = 21 41 + uqQL (3.5/64)
with
14 ag5h) ugr = 209 (35750)
7 T—71 s and _ A p—r .
or
. N 1 =yiv +ig (3.5/6a)
with a
- . —2b y
1—rs $ - 0L B 3.5/G

Representations (3.5/5a) and (3.5/6a) have long been known,in the engineering
of concentrated circuits,as equations of state for the equivalent voltage

source and for the equivalent current source, respectivelylo.‘

10The Equations for the equivalent voltage source and the equivalent current
source are often given in the literature in the so-called " generator notation,"
i.e. with the current-arrow direction opposite to that.in Fig. 3/11, while here
"load notation” is used uniformly for all n-port:networks. It should also be

pointed out that reduced state variables (u,, i,, u,., i,.} and normalized
.. 1 1° Q1 Q1
operator variables (zl, le are used here.
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l-port network ‘ 1-port network

Equations of state for the linear l-port source

Scattering form b, = ria; + b

1 Q1
Inverse scattering form a; = vlb1 * an
Impedance form uy = zd, 4 qu
Conductance form iy =y + 1Q1

Fig. 3/11. 1l-port source and sourceless l-port network represented in
two-terminal form with load"metering"arrows. (a) Wave
representation, (b) voltage /current representation.

The time-independent parameters zland y, are internal impedance and intemnal
conductance, respectively, and the source variables qu and in are the
source voltage or original voltage and the source current or original current,
respectively. Making use of these concepts, Butterweck [14] proposed the
name ‘equivalent wave source' for the source represented by the wave representation
(3.5/3). It should be emﬁhasized, however, that all three cases involve the
same linear l-port source, which is merely described by three different
equations of state.

Characteristic parameters r, and le for the equivalent wave source are
obtained from the characteristic parameters zland qu for the equivalent voltage
source or yland in for the equivalent current source by transforming Eqs.

(3.5/5a) and (3.5/6a) into the "scattering form' Eq. (3.5/3), . with the aid of



Eq. (2.5/12). We obtain

Zy 1 ) - Q1 -
negwr @O and o bee= gy B9/
—1 : -t (358D

In addition, the following relations exist between the characteristic parameters
for the voltage/current representation:

ny =1 (3.5/9a). and o= == -yl G50D)

There are three important special cases of the linear l-port source:

If 2z, = 0, then port veltage u

1 1 in Eq.(3.5/5a) is always equal to source
voltage qu. In this case, the source is also known as a primary voltage source.
If y; = 0, then port current i1 in Eq. (3.5/6a) is always equal to source
current in. This case is called the primary current source. Making use of

these concepts, we then call the equivalent wave source the primary wave source

in the wave representation for the case r, = 0; the departing port wave b

1 1

is always equal to the source wave le here.

While the primary voltage source (zl= 0} and the primary Furrent source
(yl = 0) represent.limiting cases which are difficult to effect in microwave
engineering, the primary lead source (rl = 0) is easily realizable and is
usually striven for in the designing of Practical microwave generators. When
we compare the three modes of representation, we recognizé the formal superiority
of the wave representation in the scattering form, Eq. (3.5/3) : While the
limiting case zy = 0 cannot be represented in the "equivalent current source'

conductance’ form (Eq. (3.5/6a)) and the limiting case y, = 0 cannot be represented



in the "equivalent voltage source" impedance form (Eq. (3.5/5a)), all three

limiting cases z, = 0, Y1 = 0, r, = 0, can be given in the scattering form,

1 1
Eq. (3.5/3). Only the special case Zy =y = -1, of no practical interest,
cannot be covered with the scattering form. However, this case can be described

in the wave representation by the inverse scattering form

ay w v by +aqp © (3.5/10n)
with
v, =1yl (3.5/10b) and aq = —rilbg, (3.5/10¢)
For 2, =¥, = -1, then, vy o= 0 and aQ1 = uQ1/2 = 1Q1/2. The special case of
the primary wave source (rl =0, 2=y, = -1) , the most important for

microwave engineering, has the equation of state

by=ba " (3.5{118)
in the scattering form, and the equations of state

u =11 + uq (3.5{/11b)

1 =t + fg1. © (3.5/11¢)
in the impedance and conductance forms, respectively. Here, too, a comparison of
the three Eqs. (3.5/11) indicates the advantage of the wave representation over

the voltage/current representations.



3.52 General Linear n-Port Sources

If a single-frequency microwave generator to which a linear l-port
Source can be assigned is connected with a suitable waveguide junction which
can be considered a linear, time-independent and sourceless (n+l)-port network
a system involving a source is generally obtained again which we can desig-
nate as a linear n-port source., We assume for the present that such a lin-

ear n-port source can be described in the wave representation by the scattering

form
b1 813 812+ -+ 81k ++ .+ S1n a1 bax
ba S31 92 _ as - f bas
=1 ' " Ea R 3.5(120)
by 3x1 Sy e 1 bak (3.5/128)
i'n 1 - #nn Gn \an}
or, abbreviated,
B=SA-+Bg (3.6/12b)



llere, A and B are the vectors, already explained in Section 3.42, for the arriving
and departing waves, respectively, in the reference planes of the n-port network;

§ is the scattering matrix for the n-port source. The quantity

bqu
bge

By = }lqk {3.5{13)
\bnn
is the vector -- independent of A and B -- for the departing source wave values
ka. The n components ka here are all components of the same frequency, and

are locked in phase with one another. Their individual amplitudes (peak values)
Ikal and phases arc (ka) are established by the interconnection of the
l1-port source and the (n+1)-port network. In special cases, one Or more source
waves can vanish. However, we always speak of an n-port source,if, for

n ports, not all components of columm vector EQ are identically equal to zero
in the domain of definition of the n-port network.

We can now disregard the special interconnection considered above and
generally designate generator junctions with the previously discussed properties
as linear n-port sources if they can be described by the equations of state
(3.5/12) or an appropriate equivalent form (cf. Table 7). In the following, we
always assume here that all source parameters derive from the same physical
single-frequency generation mechanism and are therefore of the same frequency;
it is not necessary, however, that the 'primary pgenerator' be physically

separable as its own junction (l-port source}, Examples of such n-port

gate sources with inseparable l-port sources in microwave engineering include



l-waveguide generators which are accessible via non-dominant-mode lines (e.g.
circular waveguides) or, generally, those which generate oscillations with a
frequency above the second-lowest cutoff frequency of the waveguidé, and,

generally, all N-waveguide generators (N > 1).

Table 7

General linear n-port gate source in four representations and
conversions of the characterlstic parameters

of the n-port source

a@ Wellen-Darstellungen b Bparmungs/Strom.Darstellungen
<
2.Quello A-Quelle ' u-Quelle {-Quclle
z 8 5=yl 8= (x4 E£) (g~ E) S = —(y+Eyly—E)
& B=S8A+ By
2 By Bq = —V¥-14, Bg=(x+Erlug Bg= —(y+E)ylig
T ‘
b4
&
)
ol E v ov=sa V=(z—E)yl(z+E) V= - (y— Eyliy+E)
a ':_; - A = V.B-l—AQ . . .
Ag AQ? —-S"]_'l)Q . Ag = (g — Ey1 ng : Ag = —(y—E)'! ig
[=]
!C__)n .
£ = z={E—S)1(E+4+8) 2= —(H—V)1H(E4+V) =yt
= ’ w=2zi+ug
g tigl ng=2(E—8)y18Bq nug=2(R—-Vy1lBg 1 wa=—yiig
£
g .
| o] y=EEsE-S) y= — (EFVUE-V) | gzt
; S ‘ i=ygutig
; £ Iy ig= —2(E-+8) 11y g = 2{E4 "’)"ll‘lu fq= —zlug

Key: a. Wave representations
b. Voltage/current representations
¢. Source



If the n-port source is closed off with suitable absorbers, then, in
accordance with Definition 11, all n waves a, arriving at the source are zero,
and thus each departing wave b, is equivalent to the corresponding source wave:

b, = b... This is again a measurement rule for determining source waves. We

k Qk
obtain the total real power delivered to all absorbers from the n-port source
here by calculating the transported power for each departing wave and then summing

thesell:

n

n n ) )
_ 1 - -l u -
Py 3 o= D hIbk = Y dlbax.  (3.5/14a)

kesl k=l k=1

We can also write the last summation as the scalar product (row times column)
of the source wave colum vector, thereby obtaining:
bql

bgz

{ '
Py =30aqibge. . ban)* | =} By By. (3.5/14 b)

an

This is at the same time the total power which the the n-port source deliv-
ers to a sourceless n-port network if the scattering matrix of the source is-
equivalent to the null matrix (cf. Section 4.64).

Making use of the designations used with the sourceless n-port network, we
likewise wish to call the coefficients S11 of the scattering matrix for
the n-port source reflection coefficients (for k = &) or transmission coefficients

(for k # &). However, they cannot be determined in the same straightforward

1l Even if several wave types exist in a waveguide, the total transported power
is obtained as the summation of individual powers, due to the orthogonality
of the individual structure functions (cf. Section 2.33 and Section 3.2).
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manner as in the case of the sourceless n-port network. We shall not cover the
possible methods for determining the Sk1 experimentally until Section 4.75.
If the n-port source is associated with a generator junction of N

waveguides, the state-variable vectors A, B and and, correspondingly, the

l_3Q
scattering matrix can be broken down into N groups assigned to the individual
waveguides just as in the case of the sourceless n-port network. The overall
scattering matrix then contains N° submatrices: N reflectionmatrices §KK and

N2 - N transmission matrices §KL (K#L). Ifall transmission matrices §KL

(K # L) are null matrices, then the N waveguide connections are uncoupled. If
all transmission coefficients Sea (k # &) are zero, the n-port source breaks
down into n mutually independent l-port sources; finally, if all scattering
coefficients are zero, we are dealing with n mutually independent 1-port primary
wave sources!?,

Just as the l-port source can, an n-port Source in the wave representa-

tion can also be described formally by the inverse scattering form
A=V R4 A, (3.5/15)

with the inverse scattering matrix V = §;1, as well as by the scattering form,
if S is not singular. A, is the column vector for the arriving source waves

_q

here. In addition, equations of state for the n-port source
w==z1i- g (3.5/10)

and . . '
i=yu+ig (3.5/17)

}2 In the special case in which all s,, = 0 (k # &), i.e. n independent 1-

port sources, the conditions of equal frequency for the source waves can be
eliminated. When the frequencies of the n l-port sources are different,
it is then necessary, for example, to carry out power calculations n times
and add the results.

[
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can be set up as an extension of equations (3.5/5a) and (3.5/6a) in the voltage/
current representation. Here, uQ and :I.Q are the column vectors for the source
voltages and source currents, respectively; the remaining column vectors and
matrices have the same meaning as for sourceless n-port networks in the voltage/
current representation. In Table 7, which itself is laid out on a matrix scheme,
we find the four representations of the general linear n-poft sourcein the
heavily outlined principal diagonal fields and, in the secondary diagonal fields,

the characteristic parameters 'of a mode of representation expressed by means of

the characteristic parameters of another mode of representation.

4,133 Switching Group With Rotational Transformation

In addition to the two previously treated cases without type mixing, there
also exists the case of a compatible combination with the mixing of directionally
degenerate types in special rotationally symmetrical waveguides. We wish to
study the coupling relations which apply here, using a simple but practically
important example, and therefore consider a compatible combination via a pair
of circular waveguides in the two-wave range as shown in Fig. 4/12,

In accordance with Section 3.81 and Fig. 4/12a, let port 1' be assigned to

]

¢ wave with reference structure le' and port 2' to the Hll wave with

the H11

reference structure BS2| in reference plane BEu, and, correspondingly, port 1"

5

to the HS. wave with leu and port 2" to the Hll wave with BSzn in reference

11
plane BEv". The reference axes BAU, and BAv" of the two reference planes are
not parallel or antiparallel now, however, as in the cases covered above; rather,

they are oriented so that they enclose angle 8 as shown in Fig. 4/12b. Due to

12



this rotation of the reference axes and thus of the reference structures, a de-
parting Hgl wave (port 1'} in reference BEv, will produce both an arriving Hgl

wave (port 1") and a departing Hil wave (port 2") in reference plane BEv"'

#o
oa L A
2,0 -
Y r97 9:,'??'
BS; BSi  gre-ipie0)
BS;"
Fanas
| L |
+ i ¥ BA tb)
BAY i
(a) Waveguides with rotated (b) Coordinate system
reference structure and reference
structure
BEY, g| BEy
L' 12'. e = By 12-1 v

tch

(¢) Equivalent circuit diagram

Fig. 4/12, Example of a comnection with type mixing.

In order to derive the coupling relations, we compile the expressions for

the transverse electric fields of all arriving and departing H11 waves in BEv,

(z,, = 0) and BE ,, (2, = 0), respectively. We obtain
B (=, = 0) =4 Vi &', (4.1/222)
Eq'(z, =0) =t VZ by, (4.1/221)
B (2, = 0) =ty V' a5, (4.1/22¢)

Eg (2, = 0) =ty Yy by {4.1/22d)
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B (5 = 0) = b, Vg g, (@.172n)

and
}u” (2,7 = 0) = 4, VZig,” 1", {4.1/23b)
Ten (2, = 0) = b VZL" 6y, {4.1{23¢)
vl (., "o 0) T V/ [ b t (41123‘1)

When they are combined, i.e., if the two reference planes coincide (zv, = -zv"},
we must then equate the superposition of the two departing waves in BE ,, to

superposition of the two arriving waves in BEv':
B (5" =0 + Eg" (" = 0) = Bf' (&' = 0) + By (z"=0). (4.1/248)"
Correspondingly, we obtain the following for the opposite direction:

Eg (2 = 0) + Eg' (2, = 0) = Ej” (2, = 0) + E&” (z," = 0). (4.1/24b)

Due to the degeneration of the H11 and Hil waves, and Since both waveguides
form a compatible pair, we obtain
ZFIJ = ZFﬁ‘ = ZF'L“ = Zqu- (‘l.l{QS)

If we now substitute Egqs. (4.1/22) and (4.1/23) into the vectorial coupling

relations (4.1/24), taking Eq. (4.1/25) into consideration, we obtain

t].” bl” + tz“ bzu . tli ul’ + t2' uga (‘Ll/:}:ﬁﬂ)
t1’ U At b = a4 g’ . {4.1/20D)
Both structure functions tl,.tz, and structure functions Toestan each form
an orthogonal pair with the same eigenvalue. According to Section 2,33, we can
convert one pair into the other pair by means of an orthogonal transformation,

for example

14



t'l' - o011 018 ﬁ]” . .
(tz') (”21 022) (tz”)' (£.1/27a)

If we now express functions tyy and to in Eq. (4.1/26a) with tin and tzu,.with

the aid of transformation (4.1/27a), we obtain

6’ b 4+ e b'z" = (011 b + 012 b2”) @1’ + (031 b1’ + ony t2) 4y’

or, after collecting th? coefficients of the same structure functions,

H ?
0 b1 b b =t {onn er’ o aw”) + b {01z @y I oaz 1)

Since t.,, is orthogonal to tons it thus follows that

1'

b1 = on ar* + oz ay’ (:.1{28a)
by = o121’ + 033 a2”. (4.1/28D)
We thus have a set of scalar coupling relations for commecting ports 1',2' with
ports 1',2".
The transformation.matrix in Eq. (4.1/27a) we call o. Since it is orthogonal,

ol = g?. We can now solve Eq. (4.1/27a) very easily with

fli”) (Ou 021) (tl’) :
e &= ’ +.1/27b
(tz 012 ozz) \t2 (4.1/27b)

and thereby express structure functions tiniton with tl"tz' in Eq. (4.1/26b).

In a corresponding manner, we then obtain the other set of scalar coupling rela-
tions with

byt = o’ -+ orzas”, (4.1/294)
(4.1/20b)

by’ = om ;" + ozzaz”
We can easily see, by comparison with coupling relations set up earlier,
that the switching group matrices are in this case equivalent to the transformation

matrix o or its transpose ET'

i5



The coefficients of the transformation matrix can be determined in the
following manner. The known structure functions for the H‘lzl and Hil waves in
BEv, and BEV,, (e.g. as in Table 2) are substituted into the transformation
equation, e.g. (4.1/27a)}, The right and left sides of Eq. (4.1/27a) can be com-

pared component-wise after the coordinate transformation

R +0)-

99' [ 0@"
By comparing coefficients we then obtain

oy =cosl, o013 = —sging,

o1 = - 8in0, o033 = — cosl.

Thus transformation matrix o is symmetrical, i.e.l, o= g_T. Since it is also
orthogonal (g_l.a gT), we also have §_1 = o.

We again collect the arriving-and departing-wave parameters for ports 1',
2' and 1',2" to form column vectors A',B' and A",B", respectively, and in place

of Eqs. (4.1/29) and (4.1/28) we write

B =G A, (4.1/30a)
B =GO A (4.1/30D)
with the switching group matrices
oy cos( —sinf ‘
Gy = G5 = (—sinﬂ —co8 0) ) . (4.1/31)

The subscript o is meant to indicate that these switching group matrices

characterize a connection with type mixing with reapect te an o¥thogenal

16



transformation. For the special angles of rotation 6 = 0° and 186°, only ports 11
and 1"  and 2' and 2", respectively, are comnected together; the switching group
matrices are then diagonal and characterize a pure interchange of signs (cf.

Eqs. (4.1/12) through (4.1/15)). If angle @ is 90° or 270°, port 1' is only
connected with port 2" and port 2' only with port 1"; this is then a special

case of an interchange of port numbers. In general, the connection is represented
by the equivalent circuit diagram shown in Fig. 4/12c.

If a compatible combination is produced via a circular waveguide pair with
twisted reference axes and with more than just the two H11 waves, the switching
group matrices can be easily generalized with the aid of the example discussed.
The directionally degenerate wave types are then coupled via Eq. (4.1[31) to
analogous, orthogonal submatrices which are arranged along the principal diagonals
of the switching group matrices, corresponding to port numbering. Of course,
this method‘can also be applied in a corresponding manner to coaxial-line

connections in the multiple-wave range. ~

4.134 General Properties of the Switching Group Matrices

In a general compatible combination of two junctions or networks, the three
interchange operations which have been considered separately . till ﬁow can occur
in combination. Connection of the two port groups TG' and TG'" of m ports each
can then be described by suitable switching group matrices whose properties we
now wish to derive from generally valid laws governing connection. We first
collect the.two switching matrix equations (4.1/16a,b) or (4.1/19a,b) or
(4.1/30a,b) to form one matrix equation ‘

E)-(n S ()

and abbreviate it with o ) “

B=Tsa  (4.1/32D)

17



Column vectors A and B are column vectors for the arriving and departing waves,
respectively, with respect to junctions V' and V'. However, wec can also conceive
of the "switching point," i.e. the totality of reference planes which coincide
in the combination, as a proper "switchihg" junction fo which a Zm-port network can
be assigned. Relative to this 2m-port network, A is then the column vector for

departing and B the vector for arriving waves. If we invert Eq. (4.1/32b)

A=T" B
— -—s —
. a _ -1 _ .
and substitute A = §s.§_ = 5-5 and Is = §-S’ we ¢btain
Y
B g = SSAS, (4.1/33)

the equation of state for the 2m-port network in customary scattering form.
We can now characterize the properties of the 2m-port network by means of the

2m-row scattering matrix

., Su Sm) : .
Sg = (,S21 e (#1134

with m-row submatrices -Eiij , using the known criteria in Section 3.6.
Due to the compatibility of the combination and the definition of switching
junctions, the 2m-port network has the following characteristics:
1. Them ports of port group TG' are not coupled with one another;

for this reason,

= 0. {4.1/35a)

18



The m ports in port group TG" are likewise not coupled with one another;

for this reason,

5y, = 0. (4.1/35b)

2. The 2m-port network is reciprocal; i.e., its scattering matrix

S is symmetrical. Thus

T
Ss = SS (4.1/35¢)
and therefore
S.. = 8F (4.1/36d)
=21 —-12° *

Characterization with one transmission matrix, e.g. §42, is thus sufficient.
3. Since the switching junction has no spatial dimensions, transmission
from ports in port” group TG' to ports in port group TG" and vice versa

occurs without phase displacement. Transmission matrix §42 is therefore

Teal,

*

815 = 5159 (4.1/35¢)

and, due to Eqs. (4.1/35a,b), scattering matrix S 1s also real,

*
S = Sg- (4.1/356)

~

4, The Zm-port network is neutral; i.e, its scattering matrix SS is unitary,

*T
S5 Ss=E (4.1/35g)

19



From Eqs. (4.1/35g), (4.1/35f) and (4.1/35c), taken together, it then follows

~

that

= E (4.1/35h)

or

The scattering matrix is thus involutory, i.e., equal to its inverse.

-

Since we had introduced scattering matrix §S as the inverse of transformation .

matrix '_I‘_S, we thus also have

T, = S.. (4.1/36)

This means that all properties of §S defined by Eq. (4.1/35) also apply to Tg-

In particular,

(t u) - -'(u v) _
§ 77 =5, MG =8y,

and, from Eq. (4.1/35d),

E('T.') - E(',")T_ ' (4.1/37)

Connection of the two port groups TG' and TG" to form one switching group

is thus adequately characterized by one switching group matrix G. We write
) A= (4.1}3&:1,) _

and /ﬁ.() - L (4.1 }38 h)

and then obtain
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op o
Ty ns ( o O) ‘ (4.1/39)

and, in place of Eq. (4.1/32a),

i O (A
(u“) '(GT cJ (A”)‘ (H1H0)

We wish to call matrix IS the transformation matrix for calculating connec-
tions in the scattering form. The connection is described here by equation of
state (4.1/40). From Eqs. (4.1/36) and (4.1/35), switching group matrix G is

real and orthogonal, i.e.,

G* =G, (4.1)412)
. G e G (4.1/41b)

If junctions V! and V' are characterized by wave "chain' matrixes, and if
the connection of portgroups TG' and TG" is to be calculated in the cascade

form, then coupling relations of the form

and A (B)
) B (A”)

are necessary for this purpose. From Eq. (4.1/40), we obtain

AN AGYHt 0 :~)
B’) o \o Gl \A")e
by rearrangement and inversion. By interchanging the operations of transposition

and inversion and using Eq. (4.1/41b), we obtain Q@T)'l = (gfI)T = (ET)T = G,

and from this the equation of state for the connection in the cascade form
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)-( o ()
;" \0 ¢} \47) (4.1/42)
The matrix’
- ¢ 0
1c=(0 G) (4.1/43)
we call the transformation matrix for calculating comnections in the cascade

form.

4,22 Transformation ofa 1l-Port Source
We next study the transformation of a 1-portsburce by a sourceless 2-portnet-
work, and for this purpose we open the network in Fig. 4/15 at switching point

2,27, Let the original 1l-port source with port 1' be described by equation

of state

by = Tye 8y * b (4.2/8)

At switching point 1,1', the parameters of state are coupled by the switching

equations

. by =y g, : (4.2/00)
by’ = p1a : ' 4.2/0D)

In addition, we again have the equations of state (4.2/1) for the 2-port pec-
work at our_disposal. The .1-port 'source resulting from the connection, as shown

in Fig. 4/17, with available port.2, is assumed to be described by the equation
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of state
b2 =T, 8, ¢+ bQZ. (4.2/10)

The (internal) reflection factor r, and source wave b, , from the tranformed

Q

source or equivalent wave source must now be determined with the aid of Eqgs.
(4.2/1), (4.2/8) and (4.2/9). For this purpose, we replace the parameters of
1"b1' for port 17 in Eq. (4.2/8) with the parameters of state a,,b, for.
port 1, using switching equations (4.2/9), and solve for bl:

state a

by==ry'~tay =1t bor's
We thereby eliminate b1 in 2-port network equation {4.2/la) and solve for a;:

e -1 L -1 - R
1=(n 811)71 819 @y - (’.“1’ V=)t pyy bt

If we now substitute this result in2-port network equation (4.2/1b) and factor

out a,, we obtain

by = [sg2 - 821 (r1'~} — s11)~t8ge) @g + soa {r1’~1 — s11) Lol pr- gl
(£.2/112)

By comparison with Eq. (4.2/10), we then find

©org == 89p 4 891 (117l — a11)"t spa (4.2/11b)

for the transformed (internal) reflection factor and

" bge = sy (r'"1 — 1)t 1’1 pyy- by (4.2/11¢)
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for the transformed source wave.

This result is interesting in two regards:

The reflection factor given in Eq. (4.2/5b) for e transformed, sourceless 1-
port networkis, as can be seen by comparison with Eq. (4.2/11b), formally identi-
cal to the reflection factor for a transformed 1-port source. Thus the trans-
formation of a sourceless l-port network is included in the more general
transformation of a l-port source as the special case in which bQ = 0.

We also see that the reference-arrow reversal at the switching point involved
with an interchange of signs as determined by polarity parameter Py only has
an effect on the transformation of the parameters of state in this case, e.g.
on the source wave, for example, but not on the transSformation of the operator

parameters, such as the reflection factor in this case.

il

l 5 11 s 2; f li
‘ byy . by,

) b:---- b]—"'
[: F Sl qQy*+

Fig. 4/17. Connection of a l-port source with a
sourceless 2-port network, and equivalent
l-port source.

For practical application, we suitably transform relationships (4.2/11b,c)

and write the following: Ty = Tyys Ty = Tyo and le, = le; then

by = 7z ag + bg2 ‘ (+.2/122)
with 31 #12 711

R L ot 4.2/12b

12 s.z. s T — s (+.2/ )
and bge = _I__8_2_1______ P11 bar. (4.2/12¢)

—anm
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If the original source is a primary wave source, i.e. T, " 0, then

LT
and bge = s21 P11- Dais

If the transforming 2-port network is an ideal loss-free line, i.e. 511 ° Sy = 0

and S12 % 591 = exp(-jge), then

B

rig = e~HEM yyy
and boz = ¢ pp- b
The transformation thus become particularly simple if the product $11%51
disappears in the numerator of Eqs. (4.2/12b,c). This is obviously the case

if either the original source (ril = () and/or the port connected to the source

(511 = 0) are matched.

4.23 Chain Configurations of 2Z-Port Networks'

If two or more 2-port networks are put in a chain as shown in Fig. 4/18 or
4/19, a 2-port network again exists. We now consider the problem of determining
the characteristic parameters of the resultant 2-port network from the parameters
from the individual 2-port units. This task can be treated in the wave represen-
tation both in the scéttering form and in the chain form.

We first study the connection of two 2-port networks as in Fig. 4/18 in
the scattering form, and‘bage our discussion on the general case in which the
2-port network with ports 1 and 2 represents a 2-port source which can be

described with the equations of state

br=snm o+ mzer + bg, o S (4-2/13“i
Dy =841 111 -+ Saa g - bqg : f4.2/13 b)



The other 2-port network is assumed sourceless and is described by the equations

of state

by = 839 ey + saq fta, ‘ (4.2/142a)
by = 543 ay 4 &4 1y (1.2{14D)

Ports 2 and 3 are joined when the connection is made as shown in Fig. 4/18;
ports 1 and 4 foxm the port of the resulting 2-port network, which then generally
again represents a 2-port source. To describe the chain combination in the
scattering form, it is desirable to consider the two unconnected Z2-port networks
together as a 4-port network to collect ports 1 and 4 in one group and ports
2 and 3 in another group. With this breakdown, we then obtain the following

from Eqs. (4.2/13) and (4.2/14) as the equation of state for the 4-port network

bl 811 0 / a1\ gQL
by 0 B43 aq
[ L O 4.21154a
bg 821, 0 de bae ( / )
bs 0 833 [22:} 0
or, with the subvectors
a1 B by By = (201
4’11 = aq » 1= b4 ' Ql '
b
A =(1); Ba= ().  Ba= (6®)
and the submatrices
S - = 811 0 ' 8 .
1 (0 8_44) y - Sip = (012 243)’
I 8 0
! 8ay e (521
P (0 ' 834) ! See = (322 -?033)

in abbreviated notation,
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Iy e Su Ay + Sig odp gy, {(+.2/15D)
By == 8y Ay + Soa Az + Bga.

The connecting of ports 2 and 3 can be described, on the basis of Eqs. (4.1/39)

and (4.1/40), by the equation

Ba L] Ts ..r‘lg ' (-‘:LEHG)
with the tranformation matrix

{0 pa |

Ts (m 0 ) (4.2117)

The polarity parameters Py3 = Pgp arTe either +1 here if the reference arrows
for ports 2 and 3 are in the same direction -- as shown in Fig. 4/18 -- or -1

if the reference arrows are in opposite directions.

‘ : ) 3 4
P
........b‘ bz-——t- -w--b' b,—
—ra' az-t—- —bql q'-—

Fig. 4/18. Diagram for calculating the scattering
matrix of a chain of two 2-port networks

The parameters of state for ports 2 and 3, which are to be connected, i.e.
subvectors 52 and EQ, must now be eliminated again and system of equations
(4.2/15) solved for Ei(él’EQl’EQZ)' Similarly to the method applied in Section
4,21, we thus replace B,
switching equation (4.2/16), and solve for 52

in the second line of Eq. (4.2/15b) with ﬁg' using

P (Tg — Su2)-1 Sy A; + (W5 — Spa)-2 Rqa.
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We then substitute this expression into the first line of Eq. (4.2/15b) and

obtain
By ={Su + S12(Ts - Su)7t S} dy + S12 (T — Saa)~} g2 - Doy
. {4.2/182)
or _
By =8 4 + By (4.2/18D)
The scattering matrix §' for the resultant 2-port source here is
8= 81y + Sz {1 — S29)-1 Sy (4.2/19a)
and, after inserting the submatrices and multiplying out,
813 S21 833 Pea 818 S
A Sop 243 1 — 892 833 ' '
S = , . (4.2/19b)
P28 fan Sel 843834 853
I — $uz 833 84:’ t1o 423 $33
For the source wave column vector I_SQ“ we obtain
Bg' = Spp(Ts — Sa2)-1 Bgs - By (4.2[2011)
or
N .
512833 . )
d —_—=_"2 " hoa -k b
bar T = szg 003 + 51 )
By = = . . {4.2/20D)
‘ _Poafas
- bos 1 — &aa 85 boz
If the 2-port network with ports 1, 2 is sourceless, then le = qu = 0, and
thus B., = 0. The scattering matrix for the resultant sourceless 2-port network

__Qi
is then likewise determined by Eq. (4.2/19).

Another special case is also included in this computation, namely that
of a 2-port source with a load on one side at port 2: We then consider gy *

= r., to be the initial reflection factor and, with S43 = 0, Szq = 0, obtain

2A
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the characteristic values for the resultant l-port source from the coefficients
in Eq. (4.2/19b) or (4.2/20b) which then remain.
According to Eq. (4.2/19), the scattering matrix for the resultant 2-port net-
work generally becomes quite simple when the reflection coefficients S92 and
for the connected ports vanish. If the original 2-port networks are matched at

533
all ports, i.e., S)1 = S9p = Szz = Sy ® 0, then the resultant 2Z-portnetwork is

also matched at both ports, i.e. Sipr = Sqqr T 0. If the original 2-port networks
are reciprocal, then the resultant 2-port network is also reciprocal.

The Scattering-form computational method used to characterize the chain
coupling of two 2-port networks can be extended in a corresponding manner to
chain configurations of more than two such networks. In many cases, particvlarly
if all 2-port networks are sourceless, it is more advantageous to carry out the
calculations in a chain form, however. We now considér a chain of q sourceless 2-
port networks as shown in Fig. 4/19. The individual 2-port networks are assumed

to be characterized by their wave chain matrices C in accordance with Eq. (3.4/24),

as defined in Section 3.44.

! ! 1 brelV_ g,
R A e ian BT 1

" b;_.' d__b\H| b;::‘

Y..-

—a, ay— g TNT

Fig. 4/19. Diagram for calculating the wave chain matrix
for a chain of q 2-port networks

We first single out two neighboring 2-port networksv,+1 from the overall

chain; these are assumed to be described by the equations of state

v fhy ' . .
(u,,) = Oy (bv’) (4.2/21) .
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and (bm) - Cui (ﬂm’) - (1.2/29)

g1 besy'

The connecting of port v! and port v+1 can be represented, according to Eq. (4.1/42),

by
(Ef::) = Tov (2: :) (4.2/23)

with transformation matrix

T == Pro w1 ((‘) ‘1’) (4.2/24)"
Here, Pyt yel is the polarity parameter for the port connection. By combining
Eqs. (4.2/21) and (4.2/22) with the aid of switching equation (4.2/23), we

obtain the equation of state for the two-member chain as

bn-l

(%) = & 7o, € (§115). (4.2/25)

Similarly, we obtain the following for the chain of q 2-port networks

b , ' . . : :
(CG:) = (11 Tc] CE TC2 “ e Cv TC\' [ Cq—l TCq_]_ Cq (g:,) N : (4._2[26)

Since the transformation matrix, agcording to Eq. (4.2/24), is a scalar matrix
in this case, it can be separated out of the matrix product. For the wave chain

matrix C for the q-member 2-port network chain we then obtain

q=-1

O = [I (Pves vo1) IqI C.. (4.2/27)

yal vel

The product over the polarity parameters is either +1 or -1, If all

individual 2-port networks are equivalent to one anodther, the product over the
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chain matrices is equal to the qth power of Eg, which can easily be determined,

for example, by diagonalization ([B3], [B4]).

4.62 Connecting Two General Subnetworks in a Chain
As shown in Fig. 4/54, we now break the microwave network down intc sub-

network N, with port groups TG1 and TGZ, and subnetwork N, with popt groups

B’
TGy and TG4. Port group TG1 contains n ports; port group' TG,, P ports; and
port groups TG2 and TG3 each contain m ports which are assumed to form a com-

patible switching group SG.

16, Ner TGy = =56 - — - 1G4 Ng 16;
in Tore) tm Tore) {m Tare) ' lp Tore)
5 8 — =8, B —

Fig. 4/54. Fhain coupling of two subnetworks Na and NB

Key: Tore = ports

Subnetwork Na is again assumed to be represented generally by an

(n+m)-port source with the equations of state (4.6/1)

By =813 A; + 812 42 + Bg, -
Bs = 8p1 Ay + Sgz Ag + Bgg
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Subnetwork NB in general represents an (m+p)-port source which is

assumed to be described by the equations of state

- By = Sz Az + 831 Ay -+ Bqa, (4.6/62)
By = Sig A3 + Sga Ay + Boa (4.8/6D)

Here, 543 is an mxm submatrix, and Sa4 is a pxp submatrix. The generally rec-
tangular submatrices Sz4 and 5= have m rows and p columns, and p rows and m
columns, respectively.

Let switching group SG, made up of portgroups TG, of N, and TG3 of N, ,again

8‘!
be characterized by switching equation (4.6/ 3). Port groups T62 and TG3 are
saturated by connecting the two subnetworks; the resulting network, as a generalized

chain configuration of the two subnetworks, is accessible via popy groups TG, and

TG,.

In order to make calculations for this general chain, we mix the equations
of state (4.6/1) and (4.6/6) for the two separate subnetworks, whereby the column
vectors of state for the resultant poxrt groups TG, and TG, or port groups TG2

and TGS‘ to be connected topether, are collected in new column vectors as

shown in the following scheme:

I S 0 Sz O Ay Bao1

B, 0 Sy 0  Suw Ay + Baa (4.87) |
i - Sgl 6T i i, :
Y G Nag 0 S Ag Bas/.

With the abbreviations

A4y \ 3 . .
Ag = (A:) (4.6/8a), Bx'ﬂ (;3;) (4.6/8D), Iigy == (};3:) , (4.6/80) .

R (j:;) (.0/8d), By o (g;) (4.8080), Doy = (‘gf_::) (@.0/81))
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and -t y
S 0 . . (S 0)
Sxx = (()ll S(M) (4_()!3 g)' 'SXY 2= ({) 343 ' (4.‘”8}1)
. S O .. . (S o) .
s = (5 0.) worsi, S = (07 ) 408D

we then obtain the following in place of Eq. (4.6/7):

x = Sxx ."x ‘*"’ Sxy J"Iy ‘+ ”QK: (4.6!911}
BY == SY.’{ J‘lx + SY)' .{ly + I’Qy. (4.6!9b}

with abbreviétions {(4.6/8d) and (4.6/8e), we can'express switching equations

(4.6/3) with the transformation equation

By = Ty Ay (4.6/10)

in which transformation matrix T, from Eq. (4.1/39)

=S

N (7 I
Ts={gr o)
is made up of switching group matrix G and an mxm null matrix.
As determined by the numbers of rows and columns of the submatrices, Exx
is an (n+p)x(n+p) matrix, and S and T, are 2mx2m matrices. The generally rec-

=¥y =5
tangular matrices §xy and §yx have (n+p) rows and 2m columns, and 2m rows and
(n+p) columns, respectiveiy.
Again the problem arises of eliminating the column vectors of state for the

connecting port groups T62 and TGS’ i.e. the colum vectors éy and Ey' We first

substitute Eq. (4.6/10) into Eq. (4.6/9b) and solve for éy:

AyztﬂpuSwrlsnxh-hﬂh-swrlﬂm-

33




We next substitute éy into Eq. (4.6/9a) and, after factoring out 5k’ we obtain

: ng e fsx:c -} Sxy (q“i - Syy}"l b‘yx] /Ix + -SXY(?'B - Sw)"l BQY -+ I;Qx
- : (4.6/11a) .

or, abbreviated

By =8 Ay + Hg. (4.8{111)

Here, scattering matring for the chain configuration of the two subnetworks is

given by

S = Sux + Sy Ty — Spp)-! Sy (4.6/12a)
and the resultant source wave column vector B_ by
Bq =Box + Sxy(Ts = Sp) 1oy (4.6/12D) "

We write the inverse 1 of the Zmx2m “supermatrix" ZS - §yy in the form

| ,. _ {8 G N\'_ (In I .
(s - St = (g™ _g) = (1 1) wen

If we invert the supermatrix, we obtain the following for mxm submatrices E” :

5

I = G S33 (G — Sz & Sag)1, (4.6/14a)

Na = (GT — 833 GT Se)~t, (£.6/14b)
) Tz = (G — Se2 G Spa)~t, {4.6/1:4 €)
Iog = GT San (GT — Sag GT 8ag)-1, (‘1-.0!1‘1—(1]

Due to the orthogonality of the switching group matrix, these inversions become’

particularly simple if one of the two inherent reflection matrices §22 or §33

is a null matrix.
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We now designate the resultant scattering matrix E:and source wave vector
Ed, on the basis of gate groups 'I‘G1 and TG4, through which the resultant network

is accessible, as

_ {Sn 8Su o (B 7 '
S"@u 344) (4.6/162) and Biq (cha)' {4.6/16D)

With the aid of Egs. (4.6/8), (4.6/13), (4.6/14), we then obtain the following
froms Eqs. (4.6/12) for the submatrices defined by Eq. t4.6/15a) for the resultant

network:

Si = 81 + 812 G Sy (G — 8o G Spa)-1 Sy, - (LGf16a)
S14 = S12(GY ~ S35 GF 8p0)-1 Sa4, (4.6{16b)
Bu = 843 (G ~ Sp2 G Saa)! Spy,  (4.6/16¢)
Bas = Saa + S13 G S22 (GT — Sy3 GT 8301 Sy (+.6/16d)

and the following for the source wave subvectors defined by Eq. (4.6/15b):

B = B+ Sip G 853 (6 — Saa G Sya) Boz +-

+ S12(GT — S33 GT S2)-! Bqa, | (4.6/16¢)
Bas = Boa + Sz GT S22 (GT — S35 G S20)71 Bgs + ‘
+ Sya ((F — Saz G Sag)-! Boe. (H6/161)
The transformation problem treated in Section 4.61 is included directly -- with

the selected symbols and port-number assignments to the different port groups --
as a special case in this second approach. If we close port group TG4 at all

ports without reflection, subnetwork N, degenerates to a single-port-group net-

B

work with port group TG3’ which is characterized by S33 and alone. If we

Bes.
now equate Sz With S, and §; with Eﬁl’ Eq. (4.6/16a) is converted into

(4.6/5a,c) and (4.6/16e) into (4.6/5b,d).
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On the other hand, the chain configurations covered here can also be con-
ceived of as a special case of a general transformation as described in Section
4.61: port group TG4 is transformed via a partial subnetwork of Na which acts
as a through connection, into a partial port group of TGI' The six equations
(4.6/16) are then obtained from Eq. (4.6/5) if the matrices used herein are
conceived of as supermatrices-which are built up in a suitable manner from the
submatrices for the two networks as shown in Fig. 4/54 and the "through

connection."

4.63 Chains of Sourceless 2Zn-Port Ports Symmetrical with Respect to
Port Numbers

If a sourceless network can be broken down into two subnetworks Na and NB
with two pOrt groups each in such a manner that all port 8roups have the same

number of POTtS and a3 port group in N, and a pprt group in N, form a compatibile

8
switching group, then the chain configuration of both subnetworks can be com-
- puted in the wave chain form. It is assumed here that a corresponding wave
chain matrix which is suitable for switching calculations can be set up for
every subnetwork (cf. Section 3.44).

We now consider the network broken down as in Fig. 4/54 and assume that
ever; port greup consists of n ports (m = p = n). Let each subnetwork be

represented by a sourceless 2n-port system.dn the wave chain form, subnetwork

N, is described by the equation of state

iy (e Cm)(Aﬁ “‘ L0 -
(*‘ll) h (021 Con) \Dy {4.6/17) .

and subnetwork NB by equation of state
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By _ (Cas Caq) (g
(-’la) ) ((»'.1:: (:44) (Bd) (4.6/18)

Port groups TG2 and TG3 are assumed to form a compatible switching groﬁp
which is characterized by switching group matrix G. The connecting of the two
port groups can then be described on the basis of Eq. (4.1/42) in the cascade

form by the transformation

() : [ | e ) (1) (4.6/19)

Under the above assumptions, all column subvectors in Eqs. (4.6/17) through
(4.6/19) have n rows, and all submatrices are nxn.

The equation of state for the two subnetworks connected in a chain can now
be determined very easily by the step-wise elimination of the vectors of state
for port groups TG, and TG# with the aid of transformation {4.6/19): In Eq.
(4.6/17}, we express the last column supervector with Eq. (4.6/19), and in

the latter we express the last supervector with Eq. (4.6/18), obtaining

(Bl) _ (Cn 012)
A Ca €z

or, after multiplying out,

+

o @ (cx CM) ("I‘i) 4.6/20
(O G) (043 Cag) \ I3y (/ ﬂ'):

(Rl) (Cu & Cy + 012G Cus O G Cgq + Ura G C.M) (.r'lq)

A1) T\Ce G Cas + Co G Gy - €t G Cyy 4 Con G Cy ) \ By )

- (4.6/20 1s)
This method of computation can be extended in a corresponding manner to

chains of several subnetworks 'which can be Tepresented with sourceless 2n-port net-

works of equal port numbers, symmetrical with respect to port number. If we

designate their Zn-rowed wave chain matrices as C ;nd the transformation matrices

-4
for the switching groups from Eq. (4.1/43) as ICv' we obtain the following as
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an extension of Eq. (4.6/20a) for the equation of state of a q-member chain:
(g:) = €1 Tc1 Cy Toz. .. O Xy .. Gt Togo1 € (};:2) (4.6/21 2)

or

q-l '
BY_TT eooma) € (*"2‘1). £.6/211
(111) a ([1‘ (A.ch) Ca Bg (+.6{21)

This computational method is of course particularly advantageous when

chains of subnetworks of the same type are involved (cf. Section 4.52).
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